The University of Sydney

CHEM1902 - CHEMISTRY 1B (ADVANCED)

and

CHEM1904 - CHEMISTRY 1B (SPECIAL STUDIES PROGRAM)

CONFIDENTIAL

TIME ALLOWED: THREE HOURS

NOVEMBER 2008

SECOND SEMESTER EXAMINATION

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

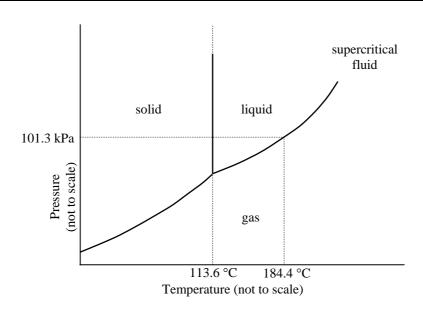
FAMILY	SID	
NAME	NUMBER	
OTHER	TABLE	
NAMES	NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 22 pages of examinable material.
- Complete the written section of the examination paper in **INK**.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new question of the short answer section begins with a •.
- Electronic calculators, including programmable calculators, may be used.
 Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheet.
- Page 24 is for rough working only.

Multiple choice section Marks Page Max Gained 29 30 Short answer section

	Marks			
Page	Max	Gained		Marker
10	4			
11	4			
12	4			
13	5			
14	5			
15	6			
16	5			
17	10			
18	5			
19	3			
20	3			
21	9			
22	4			
23	3			
Total	70			


• The ocean contains a variety of forms of CO_3^{2-} and CO_2 with a variety of acid-base and solubility equilibria determining their concentrations. There is concern that increasing levels of CO_2 will lead to increased dissolution of $CaCO_3$ and critically affect the survival of life forms that rely on a carbonaceous skeleton.			
Calculate the concentrations of Ca^2 (The K_{sp} of $CaCO_3$ is 3.3×10^{-9} .)	²⁺ and CO ₃ ²⁻ in a saturated solution of CaCO ₃ .		
21	2		
$[Ca^{2+}] =$	$[CO_3^{2-}] =$		
Calculate the pH of such a solution.	(The p K_a of HCO ₃ ⁻ is 10.33).		
	pH =		

THIS QUESTION CONTINUES ON THE NEXT PAGE

The pH of surface ocean water is currently 8.10 (having fallen from a pre-industrial era level of 8.16), the concentration of HCO_3^- is 2.5×10^{-3} M, and it is saturated with $CaCO_3$. Calculate the concentration of Ca^{2+} in these conditions.	Marks 4
$[Ca^{2+}] =$	
The pH is expected to drop to about 7.8 by the end of the century as CO ₂ levels increase further. What effect will this have on the solubility of CaCO ₃ in sea water? Use chemical equations to assist with explaining your answer.	

•	F ₂ and Cl ₂ are gases at room temperature, Br ₂ is a liquid, and I ₂ is a solid. I	Explain
	why the melting points and boiling points of the halogens increase going do	own the
	group.	

Marks 4

Shown above is the phase diagram for iodine. What are the melting and boiling points of iodine at atmospheric pressure?

In what way would you need to change the conditions to make iodine, initially at room temperature and pressure, sublime?

Describe what will happen if pressure is applied to a sample of solid iodine.

CHEM1902/1904 2008-N-5 22/46(a)

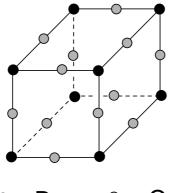
2000 11 3	22/ 10(a)
• Alfred Werner, one of the founders of the field of coordination chemistry, prepared series of platinum complexes that contained ammonia and chloride ions. One these had the empirical formula PtCl ₄ .4NH ₃ and when reacted with silver nitra released two chloride ions per formula unit. Write the structural formula of the compound and write the name of this compound.	of ste
	_
Draw the possible structures of the metal complex.	
What types of isomers can be formed by a compound with this empirical formula?	
What is the d electron configuration of the Pt in this complex?	

Marks 5

• 2-Bromo-2-methylpropane reacts with hydroxide ions to give 2-methyl-2-propanol.

$$(CH_3)_3CBr + OH^- \rightarrow (CH_3)_3COH + Br^-$$

The following rate data were collected at 55 °C.


Experiment	[(CH ₃) ₃ CBr] ₀ (M)	$[OH^{-}]_{0}(M)$	Initial rate (d[(CH ₃) ₃ COH]/dt, M s ⁻¹)
1	0.050	0.10	5.0×10^{-4}
2	0.20	0.10	2.0×10^{-3}
3	0.20	0.30	2.0×10^{-3}

1	0.050	0.10	5.0×10^{-4}
2	0.20	0.10	2.0×10^{-3}
3	0.20	0.30	2.0×10^{-3}
Determine t	the rate law for the rea	action.	
Calculate th	ne value of the rate co	nstant at 55 °C.	
		Answ	ver:
Suggest a p Explain you	ossible mechanism four answer.	or the reaction bas	sed on the form of the rate law.
I			

	, ()
The reaction is exothermic. Draw the potential energy <i>vs</i> reaction coordinate diagram for this mechanism, labelling all species that can be isolated.	Marks 2
 A 300.0 mL solution of HCl has a pH of 1.22. Given that the pK_a of iodic acid, HIO₃, is 0.79, how many moles of sodium iodate, NaIO₃, would need to be added to this solution to raise its pH to 2.00? 	4
	_
Answer	1

5

• The diagram below shows the structure of an oxide of rhenium. The unit cell is cubic with rhenium at each of the corners and oxygen in the centre of each of the edges.

• = Re

 $\circ = 0$

What is the chemical formula of this oxide?

Answer:

What are the coordination numbers of rhenium and oxygen in this compound?

Re:

O:

There is a large hole at the centre of the cell that in some compounds is occupied by a cation. What is the coordination number of a cation occupying this site?

Given that the density of this oxide is 7.1 g cm⁻³, calculate the length of the cell edge. (The structure is cubic.)

Answer:

• Complete the following table by drawing the structures of the intermediate and final organic product(s) as required. The intermediate product is formed when the starting material is treated with Reagent 1. The final product is formed when the intermediate product is treated with Reagent 2.

Marks 10

God and the state of the state				
Starting material	Intermediate product	Final product		
ОН	Reagent 1: SOCl ₂	Reagent 2: CH ₃ NH ₂		
ОН	Reagent 1: K ₂ Cr ₂ O ₇ / H [®]	Reagent 2: CH ₃ OH / H [®]		
	Reagent 1: NaBH ₄ then H ₂ O	Reagent 2: conc. H ₂ SO ₄		
ОН	Reagent 1: CH ₃ MgBr	Reagent 2: CH ₃ I		
	Reagent 1: Br ₂ / FeBr ₃ (cat.)	Reagent 2: Mg / dry ether		

C.	TEM11902/1904 2008-N-10	22/40(a)
•	Consider the amino acid L-cysteine shown below.	Marks 5
	H_2N SH COOH	
	Draw the zwitterionic form of L-cysteine.	
	Draw the dipeptide L-cysteinyl-L-cysteine.	
	Diaw the dipeptide E cystemyr E cysteme.	
	Assign the absolute configuration (<i>R</i> or <i>S</i>) of L-cysteine. Show your working.	
	Draw the enantiomer of L-cysteine.	

• Apply your understanding of curly arrows to propose a mechanism for the following reaction.

Marks 3

• Propose a structure for the product of the following reaction. Outline a mechanism for its formation, showing all curly arrows and intermediates.

Marks 3

Consider the isomer of limonene shown below.	Marks 9
H	
Show the major organic products formed when limonene is treated with excess H_2 in the presence of a Pd/C catalyst. Pay particular attention to any relevant stereochemistry. Identify which would be the major product and explain why it forms preferentially.	
Use Markovnikov's rule to predict the two major products of the reaction between limonene and excess HBr. Draw these isomers and identify the isomeric relationship between them. Specify the optical activity (active or inactive) of each isomer.	
	-
At what m/z would the molecular ion of one of these isomers appear in its mass spectrum? Explain your answer.	
	1

• For each of the following pairs of compounds, identify which is the stronger acid and give reasons for your choice.

Marks 4

and

and

 NO_2

and

$$\bigcup_{\mathsf{NO}_2}^{\mathsf{OH}}$$

• The bromination of phenol proceeds as follows.

Marks 3

Show the Wheland intermediate for one of these steps and explain why bromination occurs at positions 2, 4 and 6, but not at positions 3 and 5.

CHEM1902 - CHEMISTRY 1B (ADVANCED) CHEM1904 - CHEMISTRY 1B (SSP)

DATA SHEET

Physical constants

Avogadro constant, $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$

Faraday constant, $F = 96485 \text{ C mol}^{-1}$

Planck constant, $h = 6.626 \times 10^{-34} \,\mathrm{J s}$

Speed of light in vacuum, $c = 2.998 \times 10^8 \text{ m s}^{-1}$

Rydberg constant, $E_R = 2.18 \times 10^{-18} \text{ J}$

Boltzmann constant, $k_B = 1.381 \times 10^{-23} \text{ J K}^{-1}$

Permittivity of a vacuum, $\varepsilon_0 = 8.854 \times 10^{-12} \,\mathrm{C}^2 \,\mathrm{J}^{-1} \,\mathrm{m}^{-1}$

Gas constant, $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$

 $= 0.08206 \text{ L atm K}^{-1} \text{ mol}^{-1}$

Charge of electron, $e = 1.602 \times 10^{-19} \text{ C}$

Mass of electron, $m_e = 9.1094 \times 10^{-31} \text{ kg}$

Mass of proton, $m_p = 1.6726 \times 10^{-27} \text{ kg}$

Mass of neutron, $m_n = 1.6749 \times 10^{-27} \text{ kg}$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and 25 $^{\circ}$ C = 24.5 L

Volume of 1 mole of ideal gas at 1 atm and $0 \, ^{\circ}\text{C} = 22.4 \, \text{L}$

Density of water at 298 K = 0.997 g cm⁻³

Conversion factors

$$1 \text{ atm} = 760 \text{ mmHg} = 101.3 \text{ kPa}$$

$$0 \text{ °C} = 273 \text{ K}$$

$$1 \text{ L} = 10^{-3} \text{ m}^{3}$$

$$1 \text{ d} = 10^{-10} \text{ m}$$

$$1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$$

$$1 \text{ Ci} = 3.70 \times 10^{10} \text{ Bq}$$

$$1 \text{ Hz} = 1 \text{ s}^{-1}$$

$$1 \text{ tonne} = 10^{3} \text{ kg}$$

$$1 \text{ W} = 1 \text{ J s}^{-1}$$

Decimal fractions Decimal multiples Fraction Prefix Symbol Multiple Prefix Symbol 10^{-3} 10^{3} milli kilo k m 10^{-6} 10^{6} micro M mega μ 10^{-9} 10^{9} nano n giga G 10^{-12} 10^{12} Т pico tera p

CHEM1902 - CHEMISTRY 1B (ADVANCED) CHEM1904 - CHEMISTRY 1B (SSP)

Standard Reduction Potentials, E°

Reaction	E° / V
$S_2O_8^{2-} + 2e^- \rightarrow 2SO_4^{2-}$	+2.01
$Co^{3+}(aq) + e^- \rightarrow Co^{2+}(aq)$	+1.82
$Ce^{4+}(aq) + e^{-} \rightarrow Ce^{3+}(aq)$	+1.72
$Au^{3+}(aq) + 3e^{-} \rightarrow Au(s)$	+1.50
$\text{Cl}_2 + 2\text{e}^- \rightarrow 2\text{Cl}^-(\text{aq})$	+1.36
$O_2 + 4H^+(aq) + 4e^- \rightarrow 2H_2O$	+1.23
$Br_2 + 2e^- \rightarrow 2Br^-(aq)$	+1.10
$MnO_2(s) + 4H^+(aq) + e^- \rightarrow Mn^{3+} + 2H_2O$	+0.96
$Pd^{2+}(aq) + 2e^{-} \rightarrow Pd(s)$	+0.92
$Ag^{+}(aq) + e^{-} \rightarrow Ag(s)$	+0.80
$Fe^{3+}(aq) + e^- \rightarrow Fe^{2+}(aq)$	+0.77
$Cu^{+}(aq) + e^{-} \rightarrow Cu(s)$	+0.53
$Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$	+0.34
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.15
$2H^{+}(aq) + 2e^{-} \rightarrow H_{2}(g)$	0 (by definition)
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$	-0.04
$Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$	-0.13
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}(s)$	-0.14
$Ni^{2+}(aq) + 2e^- \rightarrow Ni(s)$	-0.24
$Co^{2+}(aq) + 2e^{-} \rightarrow Co(s)$	-0.28
$Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$	-0.44
$\operatorname{Cr}^{3+}(\operatorname{aq}) + 3e^{-} \to \operatorname{Cr}(\operatorname{s})$	-0.74
$Zn^{2+}(aq) + 2e^- \rightarrow Zn(s)$	-0.76
$2H_2O + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$	-0.83
$Cr^{2+}(aq) + 2e^{-} \rightarrow Cr(s)$	-0.89
$Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$	-1.68
$Mg^{2+}(aq) + 2e^- \rightarrow Mg(s)$	-2.36
$Na^+(aq) + e^- \rightarrow Na(s)$	-2.71
$Ca^{2+}(aq) + 2e^{-} \rightarrow Ca(s)$	-2.87
$Li^+(aq) + e^- \rightarrow Li(s)$	-3.04

CHEM1902 - CHEMISTRY 1B (ADVANCED) CHEM1904 - CHEMISTRY 1B (SSP)

Useful formulas

O seju jornuus										
Thermodynamics & Equilibrium	Electrochemistry									
$\Delta U = q + w = q - p\Delta V$	$\Delta G^{\circ} = -nFE^{\circ}$									
$\Delta_{ m universe}S = \Delta_{ m sys}S - rac{\Delta_{ m sys}H}{T_{ m sys}}$	$Moles\ of\ e^- = It/F$									
$Z_{\text{universe}} = Z_{\text{sys}} = T_{\text{sys}}$	$E = E^{\circ} - (RT/nF) \times 2.303 \log Q$									
$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$	$= E^{\circ} - (RT/nF) \times \ln Q$									
$\Delta G = \Delta G^{\circ} + RT \ln Q$	$E^{\circ} = (RT/nF) \times 2.303 \log K$									
$\Delta G^{\circ} = -RT \ln K$	$= (RT/nF) \times \ln K$									
$K_{\rm p} = K_{\rm c} (RT)^{\Delta n}$	$E = E^{\circ} - \frac{0.0592}{n} \log Q \text{ (at 25 °C)}$									
Colligative properties	Quantum Chemistry									
$\pi = cRT$	$E = hv = hc/\lambda$									
$P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$	$\lambda = h/mv$									
p = kc	$4.5k_{\rm B}T = hc/\lambda$									
$\Delta T_{ m f} = K_{ m f} m$	$E = -Z^2 E_{\mathcal{R}}(1/n^2)$									
$\Delta T_{\rm b} = K_{\rm b} m$	$\Delta x \cdot \Delta(mv) \ge h/4\pi$									
	$q = 4\pi r^2 \times 5.67 \times 10^{-8} \times T^4$									
Acids and Bases	Gas Laws									
$pK_{w} = pH + pOH = 14.00$	PV = nRT									
$pK_{\rm w} = pK_{\rm a} + pK_{\rm b} = 14.00$	$(P + n^2 a/V^2)(V - nb) = nRT$									
$pH = pK_a + \log\{[A^-] / [HA]\}$										
Radioactivity	Kinetics									
$t_{1/2} = \ln 2/\lambda$	$t_{1/2} = \ln 2/k$									
$A = \lambda N$	$k = Ae^{-E_{a}/RT}$									
$\ln(N_0/N_t) = \lambda t$	$\ln[A] = \ln[A]_{o} - kt$									
14 C age = 8033 $\ln(A_0/A_t)$	$\ln \frac{k_2}{k_1} = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$									
Miscellaneous	Mathematics									
$A = -\log_{10} \frac{I}{I_0}$	If $ax^2 + bx + c = 0$, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$									
$A = \varepsilon c l$	$ \ln x = 2.303 \log x $									
$E = -A \frac{e^2}{4\pi\varepsilon_0 r} N_{\rm A}$										

PERIODIC TABLE OF THE ELEMENTS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

	_																
1																	2
HYDROGEN																	HELIUM
H																	He
1.008		-															4.003
3	4											5	6	7	8	9	10
LITHIUM	BERYLLIUM											BORON	CARBON	NITROGEN	OXYGEN	FLUORINE	NEON
Li	Be											В	C	N	O	F	Ne
6.941	9.012											10.81	12.01	14.01	16.00	19.00	20.18
11	12											13	14	15	16	17	18
SODIUM	MAGNESIUM											ALUMINIUM	SILICON	PHOSPHORUS	SULFUR	CHLORINE	ARGON
Na	Mg											Al	Si	P	S	Cl	Ar
22.99	24.31											26.98	28.09	30.97	32.07	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
POTASSIUM	CALCIUM	SCANDIUM	TITANIUM	VANADIUM	CHROMIUM	MANGANESE	IRON	COBALT	NICKEL	COPPER	ZINC	GALLIUM	GERMANIUM	ARSENIC	SELENIUM	BROMINE	KRYPTON
K	Ca	Sc	Ti	${f V}$	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.59	74.92	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
RUBIDIUM	STRONTIUM	YTTRIUM	ZIRCONIUM	NIOBIUM	MOLYBDENUM	TECHNETIUM	RUTHENIUM	RHODIUM	PALLADIUM	SILVER	CADMIUM	INDIUM	TIN	ANTIMONY	TELLURIUM	IODINE	XENON
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
85.47	87.62	88.91	91.22	92.91	95.94	[98.91]	101.07	102.91	106.4	107.87	112.40	114.82	118.69	121.75	127.60	126.90	131.30
55	56	57-71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
CAESIUM	BARIUM		HAFNIUM	TANTALUM	TUNGSTEN	RHENIUM	OSMIUM	IRIDIUM	PLATINUM	GOLD	MERCURY	THALLIUM	LEAD	BISMUTH	POLONIUM	ASTATINE	RADON
Cs	Ba		Hf	Ta	\mathbf{W}	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
132.91	137.34		178.49	180.95	183.85	186.2	190.2	192.22	195.09	196.97	200.59	204.37	207.2	208.98	[210.0]	[210.0]	[222.0]
87	88	89-103	104	105	106	107	108	109	110	111							
FRANCIUM	RADIUM		RUTHERFORDIUM	DUBNIUM	SEABORGIUM	BOHRIUM	HASSIUM	MEITNERIUM	DARMSTADTIUM	ROENTGENIUM							
Fr	Ra		Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg							
[223.0]	[226.0]		[261]	[262]	[266]	[262]	[265]	[266]	[271]	[272]							

LANTHANOIDS

ACTINOIDS

_															
	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
	LANTHANUM	CERIUM	PRASEODYMIUM	NEODYMIUM	PROMETHIUM	SAMARIUM	EUROPIUM	GADOLINIUM	TERBIUM	DYSPROSIUM	HOLMIUM	ERBIUM	THULIUM	YTTERBIUM	LUTETIUM
	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
	138.91	140.12	140.91	144.24	[144.9]	150.4	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97
	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	ACTINIUM	THORIUM	PROTACTINIUM	URANIUM	NEPTUNIUM	PLUTONIUM	AMERICIUM	CURIUM	BERKELLIUM	CALIFORNIUM	EINSTEINIUM	FERMIUM	MENDELEVIUM	NOBELIUM	LAWRENCIUM
	Ac	Th	Pa	\mathbf{U}	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
L	[227.0]	232.04	[231.0]	238.03	[237.0]	[239.1]	[243.1]	[247.1]	[247.1]	[252.1]	[252.1]	[257.1]	[256.1]	[259.1]	[260.1]